

TI 610-3	Gas permeability of HDPE Pipes	EDITION 0104
		PAGE 1/2

Gas permeability of HDPE Pipe

Gas permeation through Plastic pipe walls follow the 1. Fick Law For Pipes it is

$$V = P \cdot \frac{\pi \cdot da \cdot L \cdot p \cdot t}{s}$$

V	permeated gas volume	L	Pipe Length
Ρ	permeation coefficient	р	partial gas pressure in the pipe
da	Pipe OD	t	time
		s	Pipe Wallthickness

Permeation Coefficients

The permeation coefficient depends on the type of gas and of the plastic .

For polyethylen the basic density is also relevant.

Following table indicates average values for polyethylen pressure pipe raw materials at 20°C (68°F).

Medium	Permeability coefficient $P \frac{cm^3}{m - bar - day}$	Medium	Permeability coefficient $P \frac{cm^3}{m - bar - day}$
Air	0,029	Helium	0,15
Argon	0,066	Hydrogen	0,22
Carbon dioxide	0,28	Methane	0,056
Carbon Monoxide	0,036	Natural Gas	0,056
Ethan	0,089	Nitrogen	0,018
		Oxygen	0,072

TI 610-3 Gas permeability of HDPE Pipes EDITION 0104 PAGE 2/2

Exemplify Calculation for Natural Gas

Due to natural gas exists of 80% to 90% methane gas and the other ingrediants do have very similar permeation coefficient, it is possible to limit the calculation for gas pipes on methane only.

Methane as a sample has following miscellaneous losses.

Polyethylen pipe SDR 11 with wallthickness of S=11 mm at pressure of 4 bar (5 bar partial pressure) result in yearly losses each kilometer length as follows :

$$V = 0,056 \times \frac{cm^3}{m - bar - day} \pi \times 11 \times 1000 m \times 5bar \times 365 days$$
$$V = 3,5 \text{ m}^3$$

Following above formula, the permeation per unit length of pipe is equal for all pipes of the same SDR class (as they have constant size / wall proportion).

The calculated result, confirmed either by practical meassurements on HDPE – Gaspipes of Engler –Bunte –Institut at University of Karlsruhe are economic, safety relevant and environmental entirely harmless.